Our framework relies on exploiting signal structure, quantization and the processing task in both standard processing and in deep learning networks leading to a new framework for model-based deep learning. It also allows for the development of efficient joint radar-communication systems. We consider applications of these ideas to a variety of problems in wireless communications, imaging, efficient massive MIMO systems, automotive radar and ultrasound imaging and show several demos of real-time sub-Nyquist prototypes including a wireless ultrasound probe, sub-Nyquist automotive radar, cognitive radio and radar, dual radar-communication systems, analog precoding, sparse antenna arrays, and a deep Viterbi decoder.
Yonina Eldar (Weizmann Institute of Science)